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INTRODUCTION

Much recent work has focused on the Investigation of Program Manipulation Systems
[1. S. 6, 7., B, 12, 14, 18] as an alternative programming paradigm In which the

PROCESSES of design and Implementation are themselves the subject of study. They
are captured and recorded to provide documentation of the program, the basis for Its
validation, and the framework within which future maintenance will occur.

This extenslop of the conventional programming paradigm to Include the development
of the program as a computer processable object (in addition to the program) Itself Is
quite profound. It Is comparable to the early recognition that programs could themselves
be treated as data, enabling computer languages to be developed. Correspondingly, by
capturing and recording the development processes, a set of tools can be developed to
use these processes as data.

Although such tools do not yet exist, It Is easy to foresee some of their capabilities:
automatically generated, up-to-date, and accurate documentation of the program relating
the Implementation back to its specification; explication of all the assumptions used
within the development and Identification of the decisions made therein; validation of an
Implementation based not on an analysis of the resulting program, but rather upon the
process by which It was produced; maintenance performed by modifying the development
process rather than by attempting to modify the optimized program; and automatic
Instrumentation to test the performance assumptions Implicit In critical design and
Implementation decisions.

Before such possibilities can be realized, however, the development process that
currently exists only within people's heads must be made explicit and recorded. How
can this be accomplished?

A key Insight of the Program Manipulation approach Is that transformations provide a
sufficient basis for the development process. Each development decision can be
represented as a transformation applied to the program. Thus, a development Is merely a
linear sequence of transformations applied to the program. (Unfortunately, such linear
sequences are unintelligible, and like programs, must be structured to be
understandable.) But what programs are the transformations applied to? Since the
object of the development Is to produce a program, the resulting program Is obviously not
the one to which transformations are applied.

Instead, transformations are applied to the PROGRAM resulting from the previous stage
of development. Each stage of the development corresponds to the transformation of a
program treated as a specification into another treated as Implementation. Thus,
development Is an Iterative (and as we will see later, sometimes a recursive) process of
successive refinement In which a specification Is gradually transformed Into an
Implementation.

This Implies that the original specification of the program Is Itself a program (so that It
can be transformed). To be a program, the specification language must have a formal
semantics (thus precluding pseudo-code types of languages) so that validity of
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transformations and of the development process is a meaningful concept.

Since the motivation of this Program Manipulation approach is to capture and record
the development process, it is essential that the specification be rather directly stated
and that it be taken as the starting point for the development. Since the intent of a
specification is to state WHAT Is required, while the intent of an implementation Is to
state HOW those requirements are to be satisfied with minimal expenditure of computing
resources, quite different languages for specification and Implementation are Implied.

This wide disparity between the specification and implementation language and the
avoidance of determining HOW requirements should be satisfied within the specification
suggest to us that the development (embodied as a sequence of transformations) must
be humanly guided (rather than automatically generated), because such global
optimization issues are not well-enough understood to automate (although this view Is not
universally held [4, 6, 1 7]). Thus, we have constructed an Interactive system In which a
user guides the system by specifying which transformations the system should apply.
The rest of this report Is a description of the development process in such an interactive
Program Manipulation system (as embodied in a prototype we have built) through
consideration of a simple example. This particular example was chosen to be simple
enough to cover within this report, yet complex enough to demonstrate the type of
Issues that arise during development. In addition, only well-known examples were
considered so that the one chosen did not have to be explained and motivated.

THE PROBLEM

Given a set of eight Queens, write a program that finds a way of positioning them on
different squares of a chessboard so that no Queen may capture any other.

THE FORMAL SPECIFICATION

Before the development processes of design and Implementation can begin, the
problem must be expressed In a formal specification. This specification should express
as much as possible WHAT the program Is to do without expressing HOW It Is to be
accomplished. The WHAT specification will then be systematically converted into a HOW
Implementation during the development process.

We have developed a formal specification language (2] In which this problem can be
directly stated. This language allows the definition of a world (Chess) In terms of the
objects (the chess board, the squares of which it is composed, the rows and columns,
the various chess pieces, etc.) of that world, the relationships that may exist among
those objects (the Immediate adjacency of two squares, the squares that comprise a
row, pieces occupying a square, etc.), the actions that exist in that world (placing a
piece on a square, moving a piece, capturing a piece, etc.), the constraints that the
objects of the world must satisfy (two pieces can't occupy the same square), and the
rules of Inference within that world (a piece can capture another If it can move to the
square occupied by that piece, etc.). These declarations define the environment within
which the program will operate. An Initial configuration of the objects In the world can be



AN EXAMPLE 3

specified (in this case that the chess board is empty [no pieces are on the board] and
that eight queens exist). The program portion of the specification then describes either
the resulting configuration desired (preferred) or the behavior desired (acceptable).
This latter option Is provided because many real tasks cannot be simply stated In terms
of a goal state, but rather are more naturally specified in terms of their desired behavior
(such as a payroll system that periodically issues checks satisfying certain criteria).
These behavioral specifications would naturally contain as much "resulting configuration"
description as possible so as to least constrain the ultimate Implementation. As the
development proceeds, the "resulting configuration" portions are converted Into behavior
specifications, which are then specialized and optimized.

For the Eight Queens problem, the formal specification is shown in Figure 1. For the
sake of conciseness and perspicuity the definition of objects, relationships, and actions
has been suppressed, as has the specification of the Initial configuration (which defines
the structure of the chess board, the fact that no pieces are on any of the squares, and
the existence of eight queens) and the Inference rule defining Queen-Capture.

PROGRAMS:
QUEENS: [LAMBDA (QUEEN-SET)

(LOCAL (BOARD-POSITION)
(FOR QUEEN IN-SET QUEEN-SET DO

(OETERM I NE BOARD-POSITION FROM
(CHESS-BOARD BOARD-POSITION))

(ASSERT (PIECE-ON-BOARD QUEEN

BOARD-POSITION]

CONSTRAINT: TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE
PATTERN: (AND (P I ECE-ON-BOARD PIECE#I BOARD-POSITION)

(P I ECE-ON-BOARD PIECE#2 BOARD-POSITION))
PATTERN-VARIABLES: (PI ECE#l PI ECE#2 BOARD-POSITION)

CONSTRAINT: QUEEN-CAN'r.CAPTUR E.ANOTIIER.QUEEN

PATTERN: (AND (P I ECE-ON-BOARD QUEEN# I BOARD-POSITION0 1)

(P I ECE-ON-BOARD QUEEN#2 BOARD-POSITION02)
(QUEEN-CAPTURE BOARD-POSTION#1

BOARD-POSTION#2))
PATTERNVARIABLES:(QUEEN#l QUEEN#2 BOARD-POSITION#1

BOARD-POSI TION#2)

Figure 1

The formal specifications Indicate that subject to two constraints (that two pieces
can't occupy the same square and that queens cannot be placed so that they can
capture each other), each queen In the set of (presumably eight) queens Is to be placed
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somewhere on the chess board. Although this specification Is not the most abstract
possible (a completely "resulting state" specification is quite straightforward), and

although a minor Implementation restriction has been imposed (the requirement of queens
not capturing each other is only logically imposed on the resulting solution and need not
necessarily be true while the solution Is being constructed, as Is the case in the formal

specification of Figure 1), this specification has been chosen to reduce the amount of
unconventional specification constructs considered in this example.

THE DEVELOPMENT PLAN

The development of this specification into an implementation progressed in three main
phases: explication, reorganization, and representation selection. In the explication
phase, Implicit structures within the specifications are made explicit and constraints are

dealt with as early as possible In an attempt to gain an understanding of the algorithmic
structure Implied by the specification. In the reorganization phase, the sources of
computational expense are Identified and the program reorganized to mitigate these

expenses. Representations suitable for the reorganized programs are selected In the

third phase.

This phase-based conceptualization of the development process Is not yet part of our
prototype system and Is Introduced here tc help the reader understand our development

plans. We theorize that In more complex tasks many cycles of this basic plan occur (it is

also clear that the representation selection may precede the reorganization). If so, then

some structure must exist among these cycles. Such structure, arising partially a priori
(plan) and partially a posteriori (documentation), represents the explanation of the

development.

Currently, a much more primitive development explanation Is maintained by the system
(see Appendix A). It consists of a linear sequence of state descriptions. Each

description is composed of the state name,,a comment entered by the developer, and

the action taken in that state (such as applying a transformation or loading the initial

spocificotlon), Structure Is added to the linear sequence only when the action taken

within the state falls. Development proceeds within the suspended state until the falling

action succeeds.

For the development explanation shown In Appendix A, the explication phase

corresponds to states I through 7, the reorganization phase corresponds to states 8
and 9, and the representation phase corresponds to state 10.

THE DEVELOPMENT PROCESS

The development of the Implementation from the formal specification is described

Informally here. The actual form of the program at each step Is given in Appendix 0,
which is organized as pairs of program displays that highlight (in bold face) the changes

from state N into state NO1. These pairs of program displays are produced by the

system as part of the automatic documentation of a development [9].

t'
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In the text that follows, the Informal description of the transition Into a state will be
preceded by its state description as given In Appendix A.

[State-2 (Unfold both constraints)
(Apply transformation: U nfold-Consl traint))

As the first step in making implicit structures explicit, both constraints contained in
the original formal specifications are "unfolded." That is, rather than relying on the
Interpreter of the language to check the constraints after each (relevant) operation andto backtrack In case the constraint is violated, an analysis Is performed to determine
where explicit checks should be inserted in the program (after assertions that could
affect the truthfulness of the constraint predicate), and the appropriate checking and
backtracking code Is added there. This analysis Is performed by the unfold-constraint
transformation. As part of its analysis, a simplification of the constraint predicate is
performed (because the assertion the check follows will be true and need not be
rechecked). If this predicate Is satisfied, then the constraint has been violated and the
call to constraint-violation Is executed, which invokes the backtracking mechanism to
reevaluate the most recent nondeterministic statement (the choice of a board position on
which to place the Queen).

Both constraints are unfolded by this transformation, and since each contains two
Instances of the fact being asserted, each generates two checks which are Inserted In

the program. The constraints, having been unfolded, are removed from the program.

(State-3 (Simplify: remove redundant unfolded constraint checks)
(Manual effort)]

Because of the symmetry that existed in the constraint patterns, one of the two
checks generated by the previous transformation for each constraint Is redundant. The
current system does not Include an automatic simplifier, so either transformations for this
particular type of simplification must be applied or else the redundant code must be
manually removed. The latter option was chosen to Illustrate this facility within the
system.

It Is assumed that situations will inevitably arise for which the appropriate
transformation does not already exist within the catalog. Therefore, the developer may
either define a new transformation (thus extending the catalog) or modify the program
directly through an interactive editor (i.e., manually modify the program). It must be
recognized that both options result In an unvalidated modification of the program (merely
defining a transformation does not ensure Its validity). In both cases the unvalidated
stop becomes part of the documentation of the development, which can later be
reviewed by the others and judged acceptable or not.

The redundancy of the first pair Is based on simple renaming of free variables, while
the second also depends upon determining that Queen-Capture Is a symmetric relation.
The second element of each pair of checks was manually edited out of the program.
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[State-4 (Make backtracking explicit so that it can be minimized)
(Apply transformation: Unfold-Consequential-Backtracking)]

The second step In making Implicit structure explicit is now attempted by applying the
transformation to unfold backtracking (other backtracking transformations can be found
In references [10, 13]). This transformation converts the Implicit control structure
nocessery to support resumption of control at a nondeterminism point from an arbitrary
failure Into a format in which the nondeterminism is embedded in an iterative loop through
all the possibilities searching for an acceptable one as determined by the loop body
containing all the possible failure points reexpressed as loop continuation statements.

The activation pattern for this transformation assumes a recursive format for the
routine containing the nondeterminism. Unfortunately, when the transformation Is applied
to the program In State-3, this activation pattern fails to match. This causes the system
to ask the developer whether he would like to modify ("jitter") the program so that the
activation pattern will match or abort the application of the current transformation. The
developer responded that Jittering was desired. The system then enters a subgoallng
mode In which further development proceeds under the direction of the developer until
the suspended activation pattern successfully matches the modified program. At that
point the development pops out of the subgoal mode and continues application of the
suspended transformation.

[State-4-1 (Convert Iteration to recursion)
(Jitter transformation: Make.set.iteration.recursive)]

In the subgoal development the developer applies a transformation (recorded as a
jitter transformation because the developer Is attempting to get the program to conform
to the requirements of a suspended transformation) that converts the Iteration to a
recursion.

It Is Instructive to digress for a moment and consider In detail the application of this
transformation, which Is shown in Figure 2. The transformation contains a comment, an
activation pattern, a list of modifications and declaration of variables used within the
transformation. In addition, It could contain properties that the program and/or data had
to satisfy In order for the transformation to be applicable or properties known to be true
after the transformation was applied.

The pattern contains variables and literals (all names not declared to be variables).
The variables will be matched against a single expression in the program to which the
transformation Is applied or against a sequence of expressions (if the variable begins
with an exclamation mark). When this pattern is applied to the program In State-3, a
unique match Is found in which SETI Is bound to QUEEN-SET, P2 Is bound to
(BOARD-POSITION), the segment variable !S1 Is bound to everything following the DO In
the FOR statement (the DETERMINE and Inner LOCAL statements), etc. If more than a
single match were found, the developer would have been asked which match to use. If
no match were found, the developer would have been asked whether the program should
be Jittered or the transformation aborted.
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MAKE-SET-ITERATION-RECURSIVE

COMM ENT: CONVERT SIMPLE SET ITERATION THROUGH THE (ONLY)
PARAMETER INTO A RECURSION

PATTERN: [LAMBDA (SET 1)
(LOCAL P2 (FOR O IN-SET SETI 00 IS?)

*!S21

MODIFICATIONS: [(BIND Ri FROM FNAME)
(BIND P3 FROM (CONS 01 P2))
(REPLACE-PATTERN
((LAMBDA (SET?)

(LOCAL P3 (TERMINATION-TEST:
(IF (EMPTY SET?)

THEN
1S2
(RETURN)))

(REMOVE 01 FROM SET 1)
!'1
(RECURSIVE-CALL: (RI SET1]

PATTERN-VARIABLES: (SET? IS1 O P2 !S2 P3 RI)

Figure 2

Following the pattern match, the applicability properties to be satisfied are checked
(there are none in this transformation). These properties fall into two
categories--properties that must be satisfied before the transformation can be applied
and properties that eventually must be satisfied to validate the applicability of this
transformation but need not be considered immediately. Such properties are quite
Important because they build up "requirements" on the program and/or data that must
eventually be satisfied, but that because they can be delayed, can be used as guidance
for the subsequent development. If any immediate properties were not satisfied, then
the system would attempt to prove them (currently only through special-purpose
property provers). Failing that, It would enter a subgoallng mode until further
development established the Immediate property.

After the applicability properties are satisfied (or delayed), the modifications are
performed. These modifications are a linear sequence of actions. The prototypical
action Is to replace the portion of the program matched by the applicability pattern with
some new pattern composed of literals and variables. The variables used In this
replacement pattern can be either bound by the applicability pattern (such as SET1) or
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ones calculated from those variables (such as RI and P3) through the BIND action. This
sequence of BIND actions calculating new values that become part of the replacement
pattern Is quite typical of the transformations we have studied (and separates them from
simpler so called "syntactic" transformations Involving only pattern replacement).

In addition to these actions, other transformations can be applied (providing a means
to package transformations), arbitrary functions Invoked, or a simple plan established
through goals to be achieved.

in the current transformation, the BIND action Is used to calculate values for the
recursive call of the program being transformed (in variable RI) and for the addition of
the program Iteration variable (QUEEN) to the declaration of variables In the LOCAL
statement (in the transformation variable P3). These values are then used, along with
several found directly by the applicability pattern, to form the replacement pattern.

The resulting program has annotations in the form of labels (names ending with a
colon), which describe the teleological function of that portion of the program [16].
These annotations may well help later transformations access and analyze appropriate
parts of the program. But as these annotations are currently part of the program text,
thoy must be dealt with by succeeding transformations whether they are Interested in
those annotations or not. This has proved most bothersome. One solution used In the
MENTOR system [I I] is to place these annotations into orthogonal dimensions accessible
only by special commands so that the annotations are invisible for those uninterested.
We expect to employ this solution for all annotations Including the maintenance of
properties.

After applying the jittering transformation of State 4-1, the modified program
successfully matches the applicability pattern of the suspended unfold-
consequential-backtracking transformation, and so processing of this transformation Is
resumed. The transformation (shown In Figure 3) Is similar In structure to the previous
transformation as Its modifications consist of a series of BIND actions followed by a
REPLACE-PATTERN action. Unlike the previous transformation, this one contains some
NECESSARY-PROPERTIES that must be satisfied before the transformation can be
applied. The properties are arbitrary predicates applied to the various objects of the
system being Implemented (such as Its programs, code segments, and data structures).
In this transformation there are four Instances of the same property applied to single
(but different) arguments consisting of a code segment Identified by the match of the
transformation-applicability pattern. Aside from a small number of built-in properties
directly relating to the semantics of the specification language (and produced and
maintained by an analysis package soon to be Incorporated within the system), all other
properties must either be defined In terms of other properties (theorem-proving
techniques will be used to determine whether or not the property Is satisfied) or
self-defined through direct generation as the result (the KNOWN property) of some
transformation(s) and/or deduction through special-purpose property provers. Typically
for self-defined properties, no explicit formal definition exists.



AN EXAMPLE

UNFOLD-CONSEQUENTIAL-BACKTRACKING

COMMENT: MAKE BACKTRACKING EXPLICIT

PATTERN: (LOCAL VI (TERM INAT ION-TEST: (IF P2 THEN 185 (RETURN)))
is,
(DETERMINE 01 FROM P111
'S2
(RECURS IVE-CALL: S3)
!S4)

NECESSARY PROPERTIES: ((CONSEQUENT IAL-NON-DETERMINI SM-FREE !Sl)
(CONSEQUENT IAL -NON-DE TERM IN ISM-FREE !S2)
(CONSEQUENT I AL-NON-DETERMINISM-FREE !S4)
(CONSEQUENT IAL-NON-DETERMINISM-FREE !S5))

MODIFICATIONS:( (BIND !S211 FROM
(UNFOLD-CONSEUUEN T IAL -BACKTRACK ING -BU I LER 1S2))

(BIND !S2UNDO FROM (UNDO-OF (ACT I yE-PREDECESSORS-OF
NIL !S23

( BIND !S 1 UNDO FROM (UNDO -OF (ACTIVE -PREDECESSORS-OF
NIL !S11

(BIND !S52 FROM (UNFOLB-CONSEQUENT I AL -BACKTRACKI lNG-BU I LDER?
!S5 T) )

(REPLACE-PATTERN
((LOCAL VI (TERMINATION-TEST: (IF P2 THEN !S5,t

(EXIT SUCCESSFUL)))
'si
(FOR ALL P? THEREIS !S2-t

(IF (SUCCESSFUL (RECURS IVE-CALL: S311
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE

* (UNDO-AC TI ONS: WSUNDO)
(LOOP-RETURN FORCE -ANOTHER -CHOICE))1

THEN
!S4
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACT IONS: ISIUNDO)
(EXIT UNSUCCESSFUL]

PATTERN-VARIABLES: (ISl !S2 !S4 !S2* IS2UNDO 1S1UNDO Vi P2 P1
S3 01 !ISM~15

Figure 3
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The property (CONSEQUENTIAL-NON-DETERMINISM-FREE) used in this transformation is
defined only through its special-purpose property prover. Informally, the property means
that the code segment to which it Is applied does not contain any "meaningful"
nondeterminism. This is Important because this transformation rearranges the program so
that any "backtracking point" is part of the still active loop; backtracking can then be
accomplished by merely continuing that loop (after undoing any actions taken within the
loop). It assumes that only one such backtracking point exists, and uses the property to
validate this assumption. The concern is that only a single backtracking point exists and
the existence of "incidental" nondeterminism Is of no consequence. In the program of
State 4-1 there are two nondeterministic statements, the selection of a queen and the
determination of where to place it on the chessboard. The first of these Is Incidental in
that It doesn't matter which queen is selected. But the second is consequential
because the course of subsequent processing is highly dependent upon the choice
made. Thus, In backtracking, only the nondeterminism of the selection of a board position
should be considered as the other, Incidental choice of a queen doesn't affect the
subsequent processing.

After the applicability pattern of the transformation has been matched, the system
attempts to verify that the necessary properties are satisfied. The first property Is
CONSEQUENTIAL-NON-DETERMINISM-FREE applied to the segment !S1 which Is bound to
the statement (REMOVE QUEEN FROM QUEEN-SET). The method of verifying this property
Is to Invoke Its special-purpose property prover, which fails because It Is unable to tell
that this nondetermlnism Is Incidental. Because a necessary property couldn't be
verified, the system enters a subgoal mode (through a self-generated ACHIEVE command
resulting In State 4-2) under which further development will continue until the necessary
property Is achieved. An appropriate message to this effect Is given to the developer.

[State 4-2-1 (Mark "REMOVE" as incidental nondeterminism)
(Apply transformations: Mark-incidental-non-determinism)]

The developer responds to this problem by applying a transformation that marks the
REMOVE statement as Incidental (by converting it to REMOVE*). This transformation has
as a required property that the choice of the object being removed (Queen) Is Incidental.
Since this is a required rather than an immediate property, it need not be verified
Immediately, and so It Is added as an UNPROVED-PROPERTY of the current state. Such
properties must be either proved (by one of the methods described previously) or
claimed (assumed by the user to be true) before the development Is completed. Any

claims (developer assumptions) become part of the documentation of the development.

After each step of the development in the subgoal mode, the system attempts to
determine whether the property to be achieved can be verified. Here, the appropriate
method Is to relnvoke the special-purpose property prover on code segment !S1.
However, the transformation just applied modified this code segment and the new value
must be used. This Is accomplished by rematching the suspended applicability pattern to
obtain the appropriate code segment. In fact, since the subgoal development logically
precedes the suspended transformation, the suspended transformation Is reprocessed

after each subgoal development step.
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With !SI rebound to (REMOVE* QUEEN FROM QUEEN-SET), the special-purpose property
prover Is successful In verifying the CONSEQUENTIAL-NON-DETERMINISM-FREE property.

Verification of the first Instance of the CONSEQUENTIAL-NON-DETERMINISM-FREE
property completes the processing of the subgoal ACHIEVE state, and processing of
State 4 resumes with attempts to verify the other Instances of this property, all of which
succeed.

Processing then continues with the modification steps. The second and third BINDactions find the active statements within some code segment and then build a sequence

that undoes their effects (so that when control is returned to the "backtracking point"
(now In the form of an Interactive loop] the program state has been restored to Its state
when control was last there). The first and last BIND actions locate any
CONSTRAINT-VIOLATION statements occurring in the program and replace them by the
undo of the active statements preceding the CONSTRAINT-VIOLATION statement (and

r following the nondeterministic choice) followed by a loop continuation statement (to the
loop being Introduced by this transformation). After all the BIND actions have been
processed, the replacement pattern Is constructed and substituted for the portion of the
program matched by the transformation's applicability pattern.

(State 5 (Assimilate constraint into generator)
(Apply transformation: Assimilate-test-in-thesis-loop)]

The final stage In explicating the underlying structure of the algorithm Is to

Incorporate Into Its selection the constraints that a board position must satisfy. Here,
these constraints are tested after a queen is placed on the board at the selected
position (because the constraints were originally stated In terms of pieces on the board),
and If the position Is unacceptable, then the queen Is removed from the board and
another selection made. In general, more efficient processing results when a selection Is
based on all such restrictions that it must satisfy. Toward this end, the developer
attempts to apply a transformation to assimilate one of these restrictions into the
generator of board positions. (This same transformation will be applied again to assimilate
the other restrictions.) Unfortunately the applicability pattern of this transformation
roquIres that the restriction being assimilated be the first statement of the body of the
t )r-loop In which the generator occurs, and this falls to match the program. As before,
the system asks the developer whether Jittering Is desired, and when affirmed, Initiates
a subgoal development (which will take several steps before the suspended applicability
pattern can be matched).

(Slate S-I (Merge the locals)
(jitter transformation: Merge-locals)]

As the first step In the Jittering process, the developer attempts to merge the LOCAL
Inside the for-loop with the outer LOCAL. Again the applicability pattern fails because
the two LOCALs being merged must be separated by only a single level of nesting (here
tho Inner LOCAL Is Inside the for-loop, which Is Inside the LOCAL), and so (after
confirmation by the developer) another level of Jittering Is Initiated.
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(State 5.1.1 (Extract LOCAL from for-loop)
(jitter transformation: Extract-local-from-for-loop)]

The developer applies a transformation that extracts the LOCAL from within the
for-loop. This transformation enables the suspended applicability pattern of the
Merge-locals transformation to succeed and so ends this level of Jittering.

The suspended applicability pattern matched the Jittered program and the
transformation's modification steps are performed. First a BIND statement Is used to
calculate the combined set of variable declarations, and then the replacement pattern is
formed which contains the combined declarations and in which the statements of the
Inner LOCAL are embedded within the outer one. (As noted previously, the current system
does not yet employ orthogonal annotation dimensions [1 ]. Here the LOCAL statements
are used solely to scope variables. If this variable scoping were handled as an
annotation It would not Impede the development as It does here.)

* -.1 (State 5-3 (Move constraint test ahead of assertion)
(jitter transformation: Move-constraint.uphill)]

The restriction has now been moved to the top level of the for-loop body, but It
follows the assertion (rather than preceding it, as required by the suspended assimilation
applicability pattern). The developer applies the Move-constraint-uphill to Interchange
the order of the restriction and the assertion preceding.

To Interchange these two statements, their mutual Interactions must be revised to
select the new ordering. This leaves the assertion unchanged since It has no
dependence on the restriction. However, both the predicate and body of the restriction
mutst (in general) be updated tu reflect knowledge of the existence of the assertion that
now follows them. Thus, if the predicate depended, In part, on the existence of the
assertion, It must be modified to Incorporate this dependence without actually accessing
the data (because It will not yet exist). In the current case, the predicate Is
Independent of the assertion, and so Is not changed. On the other hand, the THEN clause
denies the assertion before forcing another Iteration of the selection loop, and thus, Is
highly dependent upon the assertion. The semantics of the program Is maintained If the
denial Is removed (whenever another Iteration Is forced, the assertion will not exist).
Those modifications to the program are calculated by special-purpose analysis routines
(called as part of the transformation's BIND actions), Incorporated Into the replacement
pattern, and substituted Into the program.

(State 5.5 (Simplify: suppress null else clause)
(jitter transformation: Else-suppression)]

Although the restriction Is now in the right location (as the first statement In the
for-loop body), the suspended applicability pattern still doesn't match because It
requires the restriction to be an IF-THEN statement (with no ELSE clause), and this
restriction has an ELSE clause whose body is NIL.
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The fact that this match falls because of this trivial problem points up two difficulties
with the current system. First, no automatic simplification exists. Such simplification
would (if it existed) certainly have removed this null ELSE clause when it was created
(by the unfold-constraint transformation in State 2). Second, given that a simple
mismatch exists between the applicability pattern and program, rather than have Jittering
be a manual process (as It currently Is), the system should automatically jitter the
proqram so that the desired transformation can be applied (we are working to resolve
both these deficiencies). Here, the developer had to apply a simplification
transformation to remove the null ELSE clause. This modification enabled the suspended
applicability pattern to succeed, and so, processing of the JitterIng subgoal development
Is completed.

The suspended applicability pattern succeeds, and the replacement pattern is formed
by composing a new loop predicate consisting of the conjunctions of the old loop
predicate and the negation of the restriction predicate. The rest of the restriction (the
IF-THEN structure and the body of the THEN clause) Is deleted and Its semantics are now
part of the loop Itself.

[State 6 (A similate remaining constraint into loop generator)
(Apply transformation: Assinilate-test-in.thesis.loop)]

The sequence of State 5 (without having to bother with the LOCALs) Is repeated
(interchanging the order of the restriction and the assertion, and suppressing the null
ELSE clause) to incorporate the remaining restriction Into the loop generator.

(State 7 (Simplify: remove embedded AND in loop generation)
(Apply transformation: Simplify-AND)]

The embedded conjunction within the loop predicate Is merged with the outer
conjunction. Automatic simplification would, when added to the system, remove the need
for this step.

(State 8 (Maintain acceptable board positions incrementally)
(Apply transformation: CaIculate.predicate-incrementally))

The simplification performed In the previous state completes the explication phase of
the development whose purpose was to reveal the underlying structure of the algorithm
Implicit in the original specification. This structure is quite clear in State 7. A simple
recursive program exists In which on each recursive level, a queen Is removed from the
set of queens and placed on a position on the chess board not already occupied and not
capturable by any queen already on the chess board. The recursion Is then carried out
at the next level and If It (and all Its recursive calls) Is successful, the algorithm
terminates. If not, the queen Is removed from the board and another position selected.

The computationally expensive part of this algorithm Is finding an acceptable board
position. The developer recognizes that this same calculation (in a slightly altered
environment with an extra queen placed on the board) Is carried out at each level, and
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decides that rather than repeat these similar calculations, the set of acceptable board

positions should be maintained incrementally. That Is, as actions affecting the

membership of the set occur within the program, appropriate maintenance actions are

Inserted to update the set membership accordingly. The actions that can affect set

membership are the assertion and/or denial of facts which Interact with the set

definition predicate. Such statements are either preceded (assertions) or followed

(denials) by the necessary maintenance actions. Furthermore, the Iteration through the

elements of the set Is changed from a generative format (FOR ALL (predicate>...) to

simple membership In a preexisting set (FOR (X> IN-SET (set>...).

These modifications are all made automatically by the Calculate-

predicate-incrementally transformation. The calculation of the precise predicate to use

to update the set membership is quite complex (see [3] for the details and [15] for the

foundations of these Ideas), but the general Idea Is straightforward: given the newfound
truth (or falseness) of a fact, what else must necessarily be true to make the set

definition pattern change Its value (that is, become true or become false, or equivalently,

to have the support of the corresponding set element(s) change) and to ensure that no

other support exists for these elements? That is, what must be true to detect the

creation of the first support of an element or the deletion of Its last support? Only then

should it be added to, or deleted from, the set.

For the set of board positions, this maintenance predicate, following the placement of

a queen on the board or Its removal, Is determined to be the set of board positions that

are on the chess board, are not occupied by any other piece, ARE capturable by the

queen being placed on the board or removed from It, and are not capturable by any other

queen already on the board.

Actually, since the PIECE-uN-BOARD pattern occurs twice In the set definition

predicate, two maintenance action loops are generated. The first of these Is concerned

only with the position occupied by the queen (or about to be occupied by It), while the

second maintenance loop Is the one described above.

(State 9 (Simplify: remove redundant loop from maintenance actions)

(Manual effort)]

The single position handled by the first maintenance loop is also handled by the

second, more general, loop. It Is therefore redundant, and the developer used the editor

to manually remove the first maintenance loop (both the occurrence preceding the

assertion and the occurrence following the denial).

(State 10 (Pick a representation for board positions)

(Manual effort)]

State 9 completes the reorganization phase of the development accomplished by

deciding to employ Incremental set maintenance. The final phase deals with determining
representations appropriate for the processing. At this stage, the expensive part of the

processing Is determining within the maintenance actions whether particular positions are

4- -- -



AN EXAMPLE 15

capturable by any queen. Is there a representation in which this operation can be more
easily performed?

The time has come for the developer to Introduce a little creative magic (it is at just
those points that a purely automatic approach seems most suspect). By switching the
viewpoint from positions to lines (i.e., rows, columns, and diagonals) the problem Is
greatly simplified. That is, rather than incrementally maintaining the set of remaining
board positions explicitly, the set of remaining lines Is Incrementally maintained and the
remaining board positions are generated from them (as the Intersection of four of the
remaining lines: a row, a column, and two diagonals). In this representation, maintaining
the set of remaining lines when a queen is placed on the board (or removed from it)
merely Involves deleting (or adding) the corresponding lines (the row, the column, and
two diagonals) without any search. Furthermore, the Iteration through the remaining
board positions becomes a quadruply nested loop through the remaining rows, columns,
and left and right diagonals finding four lines that intersect at a single position. Since a
position Is uniquely determined by a row and column, the Inner two loops can be replaced
by checks of whether the corresponding diagonals remain.

These modifications produce the program In State 10. It was produced by manual
editing, but we are Investigating how this step can be formulated as a representation
alteration transformation (called type transformations [1g]).

REMAINING OPTIMIZATIONS

A few steps remain to complete the optimization and convert the program Into
conventional form. They Include removing the outer loop through the rows (since each
row must have a queen and failure to place a queen in a row cannot be resolved by
reconsidering that row again later), eliminating the use of the set of queens used only to
determine termination (by using any one of the other sets which become empty at the
same time), explicitly collecting the set of queen placements as the result of the
computation rather than having It be implicit In the set of assertions In the data base,
and using lists (or arrays) instead of sets.

We have not yet worked on these optimizations pending resolution of the
representation selection issue.

CONCLUSIONS

Using a transformation system to develop the Implementation of a small, but nontrivial
example, such as the Eight Queens problem presented here, Is both Instructive and
disconcerting.

Developing an Implementation through the application of formalized transformations
forces a more careful consideration of the strategy to be employed, and the tradeoffs
Involved. This highly beneficial result represents a shift In focus away from maintaining
consistency, which almost completely consumes today's programmers, toward a concern
with tradeoffs between alternative implementations. With the system assuming the



responsibility for maintaining consistency, the developer should be free to concentrate
on these higher level Issues. Such consideration of the Implementation tradeoffs
heiqhtens the need for adequate specifications that merely define the required behavior
without determining how It is to be achieved.

However, it is quite evident from the development presented here that the developer
has not been freed to consider Implementation tradeoffs. Instead of a concern for
maintaining consistency, the equally consuming task of directing the low-level
development has been Imposed. While the correctness of the program Is no longer an
Issue, keeping track of both where one Is in a development and how to accomplish each
step in all its fine detail diverts attention from the tradeoff question.

It Is quite clear that if transformation systems are to become useful, this difficulty
must be removed. Automatic simplification and jittering, as discussed In this report, will
help considerably (see also [12]). But equally Important Is the ability to state,
represent, refine, and display implementlon plans. The current lack of an adequate
framework In which the development proceeds is a major source of conceptual overload.

Major Improvements are also needed In the documentation of developments to make
thom understandable. The ability to highlight changes between successive states, as
illustrated in Appendix B, is but a first step. The structure of the development plan must.
become an Integral part of Its documentation and understanding.

Finally, If Implementation tradeoffs are to gain prominence, and If systems developed
via transformations are to be maintained, the ability must be created to replay a slightly
altered development (i.e., the altered development becomes the Implementation plan to
be carried out largely or completely automatically).

All of the above benefits and problems are present only on the assumption that people
are Involved In the development process. If this process were tQtally automated, then
none of these issues would arise. However, given the growing concern with starting a
development from a very high-level (and largely noncomputational) specification, and the
paucity of Information known about strategic optimization that Is central to Implementing
such specifications, It seems unlikely that fully automatic systems could deal effectively
with such specification languages. Rather, one would expect to see a gradual raising of
the level of the languages that can be automatically optimized. Thus, the role of
Interactive transformation systems will be to provide a validated mapping between the
high-level specifications and the "programming language" from which automatic
optimization can proceed.
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APPENDIX A
Development Documentation

(STATE-I (ENTER SPECIFICATION FOR EIGHT QUEENS PROBLEM)
(LOAD FILE EIGHT-QUEENS.SPEC))

(STATE-2 (UNFOLD BOTH CONSTRAINTS)
(APPLY TRANSFORMATION . UNFOLD-CONSTRAINT))

(SrATE-3 (SIMPLIFY: REMOVE REDUNDANT UNFOLDED CONSTRAINT CHECKS)
(MANUAL EFFORT))

(STATE-4 (MAKE BACKTRACKING EXPLICIT SO THAT IT CAN BE MINIMIZED)
(APPLY IHANSFOHMAIION . UNFOLU-CONSEQUENT IAL-BACKTRACKING))

(STATE-4-1 (CONVERT ITERATION TO RECURSION)
(JITTER TRANSFOMATION . MAKE-SET-ITERATION-RECURSIVE))

(STATE-4-2 (ACHIEVE A NECESSARY PROPERTY OF A TRANSFORMATION)
(ACHIEVE THE FOLLOWING PROPERTY:

CONSEQUENTIAL-NON-DETERMINISM-FREE
REMOVE QUEEN FROM QUEEN-SET)))

(STATE-4-2-1 (MARK "REMOVE" AS INCIDENTAL NON-DETERMINISM)
(APPLY TRANSFORMATION .

MARK-INCIDENTAL-NON-DETERMINISM))

(STATE-4-2-2
NIL
((CONSEQUENTIAL-NON-DETERMINISM-FREE (REMOVE* QUEEN FROM

UUEEN-SET))
PROVED BY NO-CONSEQUENTIAL-NON-DETERMINISM))

(STATE-4-3
(ACHIEVE A NECESSARY PROPERTY OF A TRANSFORMATION)
((CONSEQUENTIAL-NON-DETERMINISM-FREE

(LOCAL . . . )
PROVED BY NO-CONSEQUENTIAL-NON-DETERMINISM))

(STATE-4-4 (ACHIEVE A NECESSARY PROPERTY OF A TRANSFORMATION)
((CONSEQUENTIAL-NON-DETERMINISM-FREE)
PROVED BY NO-CONSEQUENTIAL-NON-DETERMINISM))
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ISTATE-S (ASSIMILATE CONSTRAINT INTO GENERATOR)
(APPLY TRANSFORMATION . ASSIMILATION-TEST-IN-THEREIS-LOOP))

(STATE-S-1 (MERGE THE LOCALS)
(JITTER TRANSFORMATION . MERGE-LOCALS))

(STATE-S-1-1 (EXTRACT LOCAL FROM FOR LOOP)
(JITTER TRANSFORMATION .

EXTRACT-I.OCAL-FROM-FOR-LOOP))

(STATE-S-3 (MOVE CONSTRAINT TEST AHEAD OF ASSERTION)
(JITTER TRANSFORMATION . MOVE-CONSTRAINT-UPHILL))

(STATE-S-5 (SIMPLIFY: SUPPRESS NULL ELSE CLAUSE)
(JIIIEH IHANSF0HMAIION . ELSE-SUPPRESSION))

(STATE-6 (ASSIMILATE REMAINING CONSTRAINT INTO LOOP GENERATOR)
(APPLY TRANSFORMATION . ASSIMILATE-TEST-IN-THEREIS-LOOP))

(STATE-6-1 (MOVE REMAINING CONSTRAINT AHEAD OF ASSERTION)
(JITTER TRANSFORMATION . MOVE-CONSTRAINT-UPHILL)

(STATE-G-3 (SIMPLIFY: SUPPRESS NULL ELSE CLAUSE)

(JITTER TRANSFORMATION . ELSE-SUPPRESSION))

(STATE-7 (SIMPLIFY: REMOVE EMBEDDED APAND IN LOOP GENERATOR)
(APPLY TRANSF09MATION . SIMPLIFY-APAND))

(STATE-8 (MAINTAIN ACCEPTABLE BOARD POSITIONS INCREMENTALLY)
(APPLY TRANSFORMATION . CALCULATE-PREDICATE-INCREMENTALLY))

(STArE-9 (SIMPLIFY: REMOVE RE[UNDANT LOOP FROM MAINTENANCE ACTIONS)
(MANUAL EFFORT))

(STATE-10 (PICK <ROW# COLUMN#> AS REPRESENTATION OF BOARD POSITION.
RECOGNIZE THAI COMPONENTS ARE ORTHOGONAL AND CAN BE
INDEPENDENTLY SELECTED. FURTHERMORE. RECOGNIZE THAT
ROW AND COLUMN DETERMINE NE-DIAGONAL AND SE-DIAGONAL.
FINALLY. RECOGNIZE THAT POSSIBLE BOARD-POSITIONS CAN BE
GENERATED FROM THE INTERSECTION OF THE REMAINING ROWS,
COLUMNS, AND DIAGONALS, AND THAT INCREMENTAL UPDATE
OF POSSIBLE-BOARD-POSITIONS MERELY INVOLVES REMOVING
THE CHOSEN ROW. COLUMN, AND TWO DIAGONALS BECAUSE
THE MAPPING IS ONE-TO-ONE IN BOTH DIRECTIONS.)

(MANUAL EFFORT))

i'-- .. .
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APPENDIX B
Highlighted State Transitions

This appendix contains pairs of program displays in which the changes from one state
Into another are highlighted In boldface type. The deleted and/or modified text is
highlighted to show the changes out of a state, while the additions and modifications are
highlighted to show the changes into the next state. These pairs of program displays are
placed on facing pages for ease of comparison. They were produced automatically as
part of the documentation of the development [9].

4
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CHANGES OUT OF STATE-i

[LAMBDA (QUEEN-SET)
j (LOCAL (BOARD-POSITION)

(FOR QUEEN IN-SET QUEEN-SET DO
A (DETERMINE BOARD-POSITION FROM

(CHESS-BOARD BOARD-POSITION))
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITIOMi
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CHANGES INTO STATE-2

[LAMBDA (QUEEN-SET)
(LOCAL (BOARD-POSITION)

(FOR QUEEN IN-SET QUEEN-SET DO
(DETERMINE BOARD-POSITION FROM

(CHESS-BOARD BOARD-POSITION))
(LOCAL (BOARD-POSITION#2 BOARD-POSITION#1 QUEEN#2 QUEEN# 1

PIECE#2 PIECE# 1)
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE#2 BOARD-POSITION)

THEN
(CONSTRAINT-VIOLATION

TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
ELSE NIL)

(IF (PIECE-ON-BOARD PIECE#I BOARD-POSITION)
THEN
(CONSTRAINT-VIOLATION

TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN#2 BOARD-POSITION#2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION#2))
THEN
(CONSTRAINT-VIOLATION

QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN#1 BOARD-POSITION#l)
(QUEEN-CAPTURE BOARD-POSITION# 1

BOARD-POSITION))
THEN
(CONSTRAINT-VIOLATION

QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)
r ELSE NIL

*i



22 TRANSFORMATIONAL IMPLEMENTATION%

- I CHANGES OUT OF STATE-2

ILAMBDA (QUEEN-SET)
(LOCAL (BOARD-POSITION)

(FOR QUEEN IN-SET QUEEN-SET DO
(DETERMINE BOARD-POSITION FROM

(CHESS-BOARD BOARD-POSITION))
(LOCAL tBOARD-POSITION.2 BOARD-POSITIONS 1 QUEEN*2 QUEENS 1

* I PIECEs2 PIECE.1)
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)

THEN
(CONSTRAINT-VIOLATION

-. 1 TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
ELSE NIL)

(IF (PIECE-ON-BOARD PIECED? BOARD-POSITION)
THEN
(CONSTRAINT-VIOLATION

TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION*2))
THEN
(CONSTrRAINT-VIOLATION

QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)
ELSE NIL)

(IF tAND tPIECE-ON-BOARD QUEEND1 BOARD-POSITION#FI
(QUEEN-CAPTURE BOARD-POSITIOND 1

THEN BOARD-POSITION))

(CONSTRAINT-VIOLATION
QUEEN-CANWT-CAPTURE-ANOTHER-QUEEN)

ELSE NILj
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CHANGES INTO STATE-3

tLAMBDA (QUEEN-SET)
tLOCAL (BOARD-POSITION)

FOR QUEEN IN-SET QUEEN-SET DO
(DETERMINE BOARD-POSITION FROM

tCHESS-BO0ARD BOARD-POSITION))
(LOCAL (BO0ARD-POSITION. 2 BOARD-POSITIONs 1 QUEENo2 QUJEEN. 1

PIECE.2 PIECE. I)
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)

THEN
(CONSTRAINT-VIOLATION

TWO-PIECES-CAN'T-OCUPY-SAME-SQUARE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN.2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION*2)
THEN
(CONSTRAINT-VIOLATION

QUJEEN-CAN'T-CAPTUIRE-ANOTHER-QU)EEN)
ELSE NIU
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CHANGES OUT OF STATE-3

[LAMBDA (QUEEN-SET)

(LOCAL (BOARD-POSITION)
(FOR QUEEN IN-SET QUEEN-SET DOI

(DETERMINE BOARD-POSITION FROM
(CHESS-BOARD BOARD-POSITION))

-- 4 (LOCAL CBOARD-POSITION.2 BOARD-POSITION. 1 QUEEN.2 QUEEN.1
PIECE.2 PIECE.)

- I (ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))

(IF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)
* THEN
A (CONSTRAINT-VIOLATION

TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
I ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION2))
THEN
(CONSTRAINT-VIOLATION

I QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)
ELSE MUL

Wo
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CHANGES INTO STATE-4-1

[LAMBDA (QUEEN-SETi
(LOCAL (QUEEN BOARD-POSITION)

(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)
THEN
(RETURNm

tREMOVE QUEEN FROM QUEEN-SET)
(DETERMINE BOARD-POSITION FROM (CHESS-BOARD BOARD-POSITION))
(LOCAL (BOARD-POSITION.2 BOARD-POSITIONe! QUEENe2 QUEENal

PIECE*2 PIECE!
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)

THEN
tCONSTRAINT -VIOLATION

TWO-PIECES-CAN'T-OcCUPY-SAME-SQUARE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONu2)
(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION2))

THEN
(CONSTRAINT-VIOLATION

QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)
ELSE NIL))

(RECURSIVE-CALL. (QUEENS QUEEN-SET)

4
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CHANGES OUT OF STATE-4-1

tLAIMBDA (QUEEN-SET)
tLOCAL (QUEEN BOARD-POSITION)

ITERMINATION-TEST: tIF (EMPTY QUEEN-SET)
THEN
(RETURNm

-~ (REMOVE QUEEN FROM QUEEN-SET)
(DETERMINE BOARD-POSITION FROM (CHESS-BOARD BOARD-POSITION))
(LOCAL (BOARD-POSITION*2 BOARD-POSITION0l QUEEN*2 QUEENel

PIECE*2 PIECEsh)
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECEs2 BOARD-POSITION)

THEN
(CONSTRAINT-VIOLATION

TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONa2)
(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION2")

THEN
(CONSTRAINT-VIOLATION

QUEEN-CANT-CAPTU)RE-ANOTHER-QUEEN)
ELSE NIL)

(RECURSIVE-CALL: QOMENS QUEEN-SET)
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CHANGES INTO STATE-4-2-1

(LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION)

(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)
THEN

(RETURN)))
(REMOVE 1 QUEEN FROM QUEEN-SET)
(DETERMINE BOARD-POSITION FROM (CHES3-BOARD BOARD-POSITION))
(LOCAL (BOARD-POSITION*2 BOARD-POSITION.l QUEENe2 QUEEN.l

PIECEe2 PIECEal)
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECEs2 BOARD-POSITION)

THEN
(CONSTRAINT -VIOLATION

TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONS2)
(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITIONe2))

THEN
(CONSTRAINT-VIOLATION

QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)
ELSE NIL))

(RECURSIVE-CALL: (QUEENS QUEEN-SET]

- --- ~-
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CHANGES OUT OF STATE-4-2-1

ELAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION)

tTERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(RETURN

(REMOVE. QUEEN FROM QUEEN-SET)
(DETERMINE BOARD-POSITION FROM (CHESS-BOARD BOARD-POSITION))(LOCAL (BOARD-POSITION*2 BOARD-POSITIONal QUEEN*2 QUEEN.I

PIECE.2 PIECEsI
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))OF tPIECE-ON-BOARD PIECE.2 BOARD-POSITION)

THEN

(CONSTRAINT-VIOLATION
TWO-PIECES-CAN'T-OCCUPY-SAME-SQUARE)

ELSE
NIL)

(IF (AND (PIECE-ON-BOARD QUEENs2 BOARD-POSITION.2)
T (QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2)i
THEN

(CONSTRAINT-VIOLATION
QUEEN-CAN'T-CAPTURE-ANOTHER-QUEEN)

ELSE
NIL))

(RECURSIVE-CALL: (QUEENS QUEEN-SET)

.............................................................
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CHANGES INTO STATE-4

(LAMBDA (QUEEN-SET)
CLOCAL (QUEEN BOARD-POSITION)

(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)
THEN
(EXIT SUCCESSFUL

(REMOVE* QUEEN FROM QUEEN-SET)
tFOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
tLOCAL (BOARD-POSITIONs2 BOARD-POSITIONaI QUEENe2 QUEEN.I

PIECE*2 PIECE*i)
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)

THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE
NIL)

(IF (AND (PIECE-ON-BOARD QUEEN.2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION*2))
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE
NIL

(IF iSUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET3
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER'CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL3



* 30 TRANSFORMATIONiAL IMPLEMENTATIO~s

CHANGES OUT OF STATE-4Li ~ ILAMBDA (QUEEN-SET)
tLOCAL (QUEEN BOARD-POSITnON)

iTERMINATION-TEST: (IF (EMPTY QUEEN-SET)Ii THEN
(EXIT SUCCESSFUL)))

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(LOCAL (BJOARD-POSITION*2 BOARD-POSITION. 1 QUEEN*2 QUEEN. 1

PIECE.2 PIECE* 1)
(AS SERT tPlECE-ON-BOARD, QUEEN BOARD-P0SITION))
dF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)

THEN
(UNDO-ACTIONS: (DEW~( (PIECE-ON-BOARD QUEEN

BOARD-POSITION))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION2))
THEN
(UNDO-ACTIONS: (DEWJ iPIECE-ON-BOARD QUEEN

BOARD-POSITION))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NILi)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)
(LOOP-RETURN FORCE-ANOTHER-CHOICER)

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SETH)
(EXIT UNSUCCESSFUUi



31
AN EXAMPLE

CHANGES INTO STATE-5-1-1

tLAMBOA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION)

(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)
THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(LOCAL (BOARD-POSITION*2 BOARD-POSITION.l QUEEN*2 QUEEN.1

PIECE*2 PIECEul)
Li (FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
a1 (ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))

(IF (PIECE-ON-BOARD PIECEe2 BOARD-POSITION)
THEN
(UNDO-ACTIONS: (DEY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEENs2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION.2))
THEN

(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN
BOARD-POSITION))

(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFULi



32 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-S-1-1

tLAMBDA (QUEEN-SET)
(LOCAL CIUEEN BOARD-POSITION)

(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)
THEN

(EXIT SUCCESSFULm
(REMOVE. QUEEN FROM QUEEN-SET)
(LOCAL (BOARD-POSITION#2 BOARD-POSITION# 1 QUEEN#2 QUEEN# 1

PIECE#2 PIECE# 1)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE.2 BOARD-POSITION)

THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEENs2 BOARD-POSITIONS2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION*2))
THEN

(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN
BOARD-POSITION)))

(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT LNSUCCESSFULi



AN EXAMPLE 3

CHANGES INTO STATE-5-1

tLAMBDA cQUEEN-SET)
(LOCAL ( QUEEN BOARD-POSITION BOARD-POSITION#2 BOARD-POSiTION#1 QUE

QUEEN#l PIECE#2 PIECE#l1
(TERMINATION-TEST; (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
4FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN B0ARD-POSITION))

* (IF (PIECE-ON-BOARD PIECE*2 BOARD-POSITION)
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)
(LOOP-RETURN FORCE -ANOTHER-CHOICE)
ELSE NIL)

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION#2)
(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITIONe2")

THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: QUEENS QUEEN-SE'Tm)
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNODO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
tEXIT UINSUCCESSFULj



34 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-5-1

ILAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION=2 BOARD-POSITIONs1 QUEENs2

QUEENsl PIECE*2 PIECESI)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFUL)))

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (PIECE-ON-BOARD PIECE.2 BOARD-POSITION)

THEN
tUNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
ILOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE
NIL)

(IF (AND (PIECE-ON-BOARD QUEENs2 BOARD-POSITION.2)
(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITIONs2))

THEN

(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN
BOARD-POSITION)))

(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
tUNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL)



AN EXAMPLE

CHANGES INTO STATE-5-3

tLAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITION01 QUEEN*2

QUEEN.l PIECE*2 PIECEI)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
dF (PIECE-ON-BOARD PIECEs2 BOARD-POSITION)

THEN
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION*2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITIONU2))
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))

(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE ML)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION))

(LOOP-RETURN FORCE-ANOTHER-CHOICE))
THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFULi

o a



30 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-5-3

[LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION.2 BOARD-POSITIONe I QUEEN.2

QUEENa! PIECEs2 PIECE l)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFUL)

(CR4OVEs QUEEN FROM QUEEN-SET)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(IF (PIECE-ON-BOARD PIECE.2 BOARD-POSITION)

THEN
(LOOP-RETURN FORCE-ANOTHER-CHOICEi

ELSE
NIL)

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONS2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN
(UNDO-ACTIONS: iDENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))

(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUU



AN EXAMPLE 37

CHANGES INTO STATE-5-5

tLAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION.2 BOARD-POSITIONs 1 QUEEN*2

QUEEN.! PIECEu2 PIECE= )
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(IF (PIECE-ON-BOARD PIECE.2 BOARD-POSITION)

THEN
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (AND (PIECE-ON-BOARD QUEENs2 BOARD-POSITION.2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION.2))
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL



38 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-5-5

(LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITIONs2 BOARD-POSITIONa! QUEEN*2

QUEENal PIECE*2 PIECEsh)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULm

(REMOVE. QUEEN FROM QUEEN-SET)
(FOR ALL (CHESS-BOARD BOARD-POSITION)

THEREIS
(IF (PIECE-ON-BOARD PIECE.2 BOARD-POSITION)

* 1THEN
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONe2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUU



AN EXAMPLE 3

CHANGES INTO STATE-S

:LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITION. 1 QUEEN*2

QUEEN.1 PIECE*2 PIECEsb
tTERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
tEXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL WAAND (CHESS-BOARD BOARD-POSITION)

(NOT (PIECE-ON-BOARD PIECE.2 BOARD-POSITION)
THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (AND (PIECE-ON-BOARD QUEEN#2 BOARD-POSITION*2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION,
tLOOP-RETURN FORCE-ANOTHER-CHOICE)

4 ELSE NIL)
OIF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)

ELSE
(UNDO-ACTIONS: (DENW (PIECE-ON-BOARD QUEEN

BOARD-POSITION))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN To QUEEN-SETH)
tEXIT UNSUCCESSFUU



40 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-5

[LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITIONu! QUEEN*2

QUEENs1 PIECE*2 PIECEBl)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULb

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

(APAND (CHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECEs2 BOARD-POSITION)))

THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONe2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE
NIL)

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUI,

. ... , 4 ' ,, , ' . . ' -- " -, ' . .



AN EXAMPLE 41

CHANGES INTO STATE-6-1

ILAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITION. QUEEN*2

QUEENa1 PIECE*2 PIECE=I)
4TERMINATION-TEST: (IF (EMPTY QUEEN-SETi

THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

(APAND (CHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECEs2 BOARD-POSITION)m

THEREIS
(IF (AND (PIECE-ON-BOARD QUEENs2 BOARD-POSITION.2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN
tLOOP-RETURN FORCE-ANOTHER-CHOICE)
ELSE NIL)

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL)

d~.



42 TRANSFORMATIONAL IMPLEMENTATIONs

CHANGES OUT OF STATE-6-1

tLAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITIONs 1 QUEEN*2

QUEENul PIECEs2 PIECEah
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
EXT SUCCESSFULU

4 (REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

(APAND (CHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECE*2 BOARD-POSITIONm

THEREIS
(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION.2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN
(LOOP-RETURN FORCE-ANOTHER-CHOICEi
ELSE
NIL

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
dF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SETm

THEN
(LOOP-RETURN CHIOICE-ACCEPTEO)
ELSE
(UNDO-ACTIONS: (DEY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
IEXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADOD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUU0



AN EXAMPLE 43

CHANGES INTO STATE-6-3

[LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITIONe 1 QUEENs2

QUEENs1 PIECEs2 PIECEsi)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
4 (EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

(APAND (CHESS-BOARD BOARD-POSITION)
(NOT tPIECE-ON-BOARD PIECEs2 BOARD-POSITION)))

THEREIS
(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION*2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))
THEN

(LOOP-RETURN FORCE-ANOTHER-CHOICE))
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL

i-



44 TRANSFORMATIONAL IMPLEMENTATIONs

CHANGES OUT OF STATE-6-3

[LAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITIONe2 BOARD-POSITION.l QUEEN*2

QUEEN.1 PIECEs2 PIECEl)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

(APAND tCHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECEe2 BOARD-POSITION)))

THEREIS

(IF (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION*2)
(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2))

THEN
tLOOP-RETURN FORCE-ANOTHER-CHOICE))

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
4 (IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))

0EXIT UNSUCCESSFUU



71

AN EXAMPLE 45

CHANGES INTO STATE-6

[LAMBDA (QUEE,.- SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITIONs2 BOARD-POSITIONet QUEENs2

QUEENal PIECE*2 PIECEsI)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
tEXIT SUCCESSFULU,

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

APAND (APAND (CHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECE.2 BOARD-POSITION))

(NOT (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION.2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITIONs21
THEREIS
tASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))

THEN
tLOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DEY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADO QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL

't'!



46 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-6

ILAMBDA (QUEEN-SET)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITION. 1 QUEEN*2

QUEEN.i PIECE.2 PIECE.])
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFUL)))

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

tAPAND APAND (CHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECE.2 BOARD-POSITION

(NOT (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITION2)

(QUEEN-CAPTURE BOARD-POSITION
BOARD-POSITION.2]

THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))

(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SE )))
THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)))
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
EL "

(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL

*1 A~U



AN EXAMPLE 47

CHANGES INTO STATE-?

tLAkMA iQUEEN-SET)
tLOCAL (QUEEN BOARD-POSITION BOARD-POSITION.2 BOARD-POSITIONel QUEENe2

QUEENsI PIECE*2 PIECEsl)
(I'RMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFUL)))

tREMOVE* QUEEN FROM QUEEN-SET)
(FOR ALL

APAND (CHESS-BOARD BOARD-POSITION)
(NOT (PIECE-ON-BOARD PIECE*2 BOARD-POSITION))
(NOT (AND (PIECE-ON-BOARD QUEENu2 BOARD-POSITION*2)

(QUEEN-CAPTURE BOARD-POSITION
BOARD-POSITION*2i

THEREIS
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET)))

THEN
(LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITIONm
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN
(EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL



48 TRANSFORMATIONAL IMPLEMENTATION.

CHANGES OUT OF STATE-?

tlLAMBDA (QUEEN-SET)
4LOCAL (QUEEN BOARD-POSITION BOARD-POSITION#21BOARD-POSITIONe 1 QUEEN#2

QUEEN.1 PIECE*2 PIECEsh
iTERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN
(EXIT SUCCESSFULm

(REMOVE* QUEEN FROM QUEEN-SET)
-, (FOR AUL

(APAND (CHESS-BOARD BOARD-POSITION),
pf i (NOT (PIECE-ON-BOARD PIECE#2 BOARD-POSITION))

(NOT (AND (PIECE-ON-BOARD QUEEN#2 BOARD-POSITION02P,
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION#2,
THEREIS
(ASSERT (PIECE-ON-13OARD QUEEN BOARD-POSITtON))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET))

THEN
tLOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN

BOARD-POSITION)m
(LOOP-RETURN FORCE-ANOTHER-CHOICE")

THEN
(EXIT SUCCESSFUL)

ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL)



AN EXAMPLE 49

CHANGES INTO STATE-a

tLAMBDA
(QUEEN-SET POSSIBLE-BOARD-POSITIONS)
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITION. 1 QUEEN*2 QUEEN. 1

PIECE*2 PIECEuli
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET) THEN (EXIT SUCCESSFUL))
(REMOVE* QUEr.N FROM QUEEN-SET)
(FOR (BOAR-D-POSITION) IN-SET POSSIBLE-BOARD-POSITIONS THEREIS
(MAINITENANCE-ACTIONS: tFOR ALL

(APAND (CHESS-BOARD BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN#3 BOARD-POSITION# 3

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION3)
(NOT (PIECE-ON-BOARD PIECE#2 BOARD-POSITION)))

LBIND (BOARD-POSITION# 3 QUEEN# 3
* DO (DELETE BOARD-POSITION FROM POSSIBLE -BOARD-POSITI ONS)

(FOR ALL
* - APAND (CHESS-BOARD BOARD-POSITION#3)

(NOT tPIECE-ON-BOARD PIECE#3 BOARD-POSITION# 3n
(QUEEN-CAPTURE BOARD-POSITION#3 BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN#2 BOARD-POSITION*2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION#2i
LBIND tBOARD-POSITIONa3 PIECE#3)
DO (DELETE BOARD-POSITION#3 FROM POSSIBLE-BOARD-POSITIONS))

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE -CALL: (QUEENS QUEEN-SETm
THEN (LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS:

tDENY (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(MAINTENANCE-ACTIONS: (FOR ALL

(APAND (CHESS-BOARD BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN#3 BOARD-POSITION#3)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITIOND 3m
(NOT (PIECE-ON-BOARD PIECE#2 BOARD-POSITION))

WBIND iBOARD-POSITION#3 QUEEN#3)
DO (ADD BOARD-POSITION TO POSSIBLE-BOARD-POSITIONS))

(FOR ALL
APAND (CHESS-BOARD BOARD-POSITION#3)

(NOT (PIECE-ON-BOARD PIECE#3 BOARD-POSITIONU3))
(QUEEN-CAPTURE BOARD-POSITION#3 BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN#2 BOARD-POSITlON#2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITiON#2i
LBIND (BOARDPOSITION#3 PIECE#3)
DO (ADD BOARD-POSITIONdI3 TO POSSIBLE -BOARD-POSITIONSi

(LOOP-RETURN FORCE-ANOTHER-CHOICE))
THEN (EXIT SUCCESSFUL)
ELSE (UNDO-4b'TIONS: (ADO QUEEN TO QUEEN-SETH)

IEXIT UN.UcCESSFWU



s0 TRANSFORMATIONAL IMPLEMENTATION:

CHANGES OUT OF STATE-8

[LAMBDA tQUEEN-SET POSSIBLE-BOARD-POSITIONS)
- I (LOCAL (QUEEN BOARD-POSITION BOARD-POSITION*2 BOARD-POSITION. 1 QUEEN*2

QUEEN.1 PIECE*2 PIECEsh)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET) THEN (EXIT SUCCESSFULm
(REMOVE* QUEEN FROM QUEEN-SET)
(FOR (BOARD-POSITION) IN-SET POSSIBLE-BOARD-POSITIONS THEREIS

(MAINTENANCE-ACTIONS:
(FOR ALL (APAND (CHESS-BOARD BOARD-POSITION)

(NOT (AND (PIECE-ON-BOARD QUEEN#3
BOARD-POSITION#3)

(QUEEN-CAPTURE BOARD-POSITION
BOARD-POSITION#3m)

(NOT (PIECE-ON-BOARD PIECE#2 BOARD-POSITION))
WIND (BOARD-POSITION3 QUEEN#3) DO
(DELETE BOARD-POSITION FROM POSSIBLE-BOARD-POSITIONS")

(FOR ALL iAPAND (CHESS-BOARD BOARD-POSITION#3)
(NOT (PIECE-ON-BOARD PIECE*3 BOARD-POSITION.3))
(QUEEN-CAPTURE BOARD-POSITION*3 BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN*2 BOARD-POSITIONs2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION*2i
LBIND (BOARD-POSITION#3 PIECE#3)
DO (DELETE BOARD-POSITION.3 FROM POSSIBLE-BOARD-POSITIONSi

(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET))

THEN (LOOP-RETURN CHOICE-ACCEPTED)
ELSE
(UNDO-ACTIONS:
(DENY (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(MAINTENANCE-ACTIONS:
(FOR ALL (APAND (CHESS-BOARD BOARD-POSITION)

NOT (AND (PIECE-ON-BOARD QUEEN#3
BOARD-POSITION#3)

(QUEEN-CAPTURE BOARD-POSITION
BOARD-POSITION#3m)

(NOT (PIECE-ON-BOARD PIECE#2
BOARD-POSITION))

WBIND (BOARD-POSITION#3 QUEEN#3) DO
(ADD BOARD-POSITION TO POSSIBLE-BOARD-POSITIONS))

(FOR ALL [APAND (CHESS-BOARD BOARD-POSITION*3)

(NOT (PIECE-ON-BOARD PIECE#3 BOARD-POSITION3")
(QUEEN-CAPTURE BOARD-POSITIONs3 BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEENu2 BOARD-POSITIONs2)

(QUEEN-CAPTURE BOARD-POSITION BOARD-POSITION.2)
LBIND (BOARD-POSITION#3 PIECEe3)
DO (ADD BOARD-POSITION*3 TO POSSIBLE-BOARD-POSITIONS)

iLOOP-RETURN FORCE -ANOTHER-CHOICE))
THEN (EXIT SUCCESSFUL)
ELSE cUNDO-ACTIONS: (ADO QUEEN TO QUEEN-SETH)

(EXIT UNSUCCESSFULI



AN EXAMPLE 51

CHANGES INTO STATE-S

(LAMBDA (QUEEN-SET POSSIBLE-BOARD-POSITIONS,
(LOCAL (QUEEN BOARD-POSITION BOARD-POSITION.2 BOARD-POSITIONS 1 QUEEN*2

QUEENal PIECE*2 PIECEsh)
(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)

THEN (EXIT SUCCESSFULm
(REMOVE* QUEEN FROM QUEEN-SET)
(FOR (BOARD-POSITION) IN-SET POSSIBLE-BOARD-POSITIONS

THEREIS
(MAINTENANCE-ACTIONS:

(FOR ALL
AWAND (CHESS-BOARD BOARD-POSITION.3)

( NOT (PIECE-ON-BOARD PIECE*3 BOARD-POSITION3"
(QUEEN-CAPTURE BOARD-POSITION*3

BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEENe2

BOARD-POSITION#2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION*23
LWIND (BOARD-POSITION*3 PIECE*3)
DO (DELETE BOARD-POSITION*3 FROM

POSSIBLE-BOARD-POSITIONSi
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE -CALL: (QUEENS QUEEN-SET))

THEN (LOOP-RETURN CHOICE-ACCEPTED)
ELSE
tUNDO-ACTIONS:

(DENY (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(MAINTENANCE-ACTIONS:
(FOR ALL

WAAND (CHESS-BOARD BOARD-POSITION*3)
(NOT (PIECE-ON-BOARD PIECE*3

BOARD-POSITIONu3")
tQUEEN-CAPTURE BOARD-POSITION*3

BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN*2

BOARD-POSITION 2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITIONS2i
LBIND (BOARD-POSITION*3 PIECE*3)
DO
(ADD BOARD-POSITION.3 TO

POSSIBLE -BOARD-POSITIONSi
(LOOP-RETURN FORCE-ANOTHER-CHOICER)

THEN (EXIT SUCCESSFULi
ELSE
(UNDO-ACTIONS: (ADD QUEEN TO QUEEN-SET ii
(EXIT UNSUCCESSFUiJ~



52 TRANSFORMATIONAL IMPLEMENTATIONt

CHANGES OUT OF STATE-B

tLAMODA
cQUEEN-SET POSSIBLE-BOARD-POSITIONS)
(LOCAL

(QUEEN BOARD-POSITION BOARD-POSITIONa.2 BOARD-POSITION. 1 QUEENs2 QUEEN. 1
PIECE*2 PIECEub)

(TERMINATION-TEST: (IF (EMPTY QUEEN-SET)
THEN (EXIT SUCCESSFUL))

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR (BOARD-POSITION) IN-SET POSSIBLE-BOARD-POSITIONS
THEREIS
(MAINTENANCE-ACTIONS: (FOR ALL

APAND (CHESS-BOARD BOARD-POSITIONU3)
(NOT (PIECE-ON-BOARD PIECE#3

BOARD-POSITION#3D
(QUEEN-CAPTURE BOARD-POSiTION#3

BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN2

BOARD-POSITION#2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION02i
WIND (BOARDPOSITION#3 PIECE#3'
DO
(DELETE BOARD-POSITION#3 FROM

POSSIBLE-BOARD-POSITIONSm
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SETi
THEN (LOOP-RETURN CHOICE-ACCEPTED)
ELSE
KUNDO-ACTIONS:

(DENY (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(MAINTE.'D4NCE-ACTIONS: (FOR ALL

APAND (CHESS-BOARD BOARD-POSITIONO3
(NOT (PIECE-ON-BOARD PIECE#3

BOARD-POSITION#39)
(QUEEN-CAPTURE BOARD-POSITION#3

BOARD-POSITION)
(NOT (AND (PIECE-ON-BOARD QUEEN#2

BOARD-POSITION#2)
(QUEEN-CAPTURE BOARD-POSITION

BOARD-POSITION02i
WIND (BOARDPOSITION#3 PIECE#3)
0O
(ADD BOARD-POSITION03 TO

POSSIBLE-BOARD-POSITIONSi
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN (EXIT SUCCESSFUL)
ELSE
(UNDO-ACTIONS: (ADO QUEEN TO QUEEN-SET))
(EXIT UNSUCCESSFUL,



AN EXAMPLE 53

CHANGES INTO STATE- 10

gLAMBDA (QUEEN-SET REMAINING-ROWS REMAINING-COLUMNS
REMAINING-NE-DIAGONALS REMAINING-SE-DIAGONALS)

dLOCAL (QUEEN BOARD-POSITION BOARD-POSITION.2 BOARD-POSITIONs I QUEEN*2
QUEEN.1 PIECEs2 PIECEms)

(TERMINATION-TEST: dF (EMPTY QUEEN-SET)
THEN (EXIT SUCCESSFUL)))

(REMOVE* QUEEN FROM QUEEN-SET)
(FOR ROW IN-SET REMAINING-ROWS THEREIS

(FOR COLUMN IN-SET REMAINING-COLUMNS
WHEN
(PROGN (DETERMINE' NE-DIAGONAL FROM

cCORRESPONDING-NE-DAGONAL ROW COLUMN))
(DETERMINE" SE-DIAGONAL FROM

(CORRESPONDING-SE-DIAGONAL ROW COLUMN))
(APAND (IN-SET? NE-DIAGONAL REMAINING-NE-DIAGONALS)

(IN-SET? SE-DIAGONAL REMAINING-SE-DIAGONALS)
I,

THEREIS
(MAINTENANCE-ACTIONS: (REMOVE' ROW FROM REMAINING-ROWS)

(REMOVE' COLUMN FROM
REMAINING-COLUMNS)

(REMOVE2 NE-DIAGONAL FROM
REMAINING-NE-DIAGONALS)

(REMOVE' SE-DIAGONAL FROM
REMAINING-SE-DIAGONALS))

(DETERMINE' BOARD-POSITION FROM
CORRESPONDING-BOARD-POSITION BOARD-POSITION

ROW COLUMN))
(ASSERT (PIECE-ON-BOARD QUEEN BOARD-POSITION))
(IF (SUCCESSFUL (RECURSIVE-CALL: (QUEENS QUEEN-SET

REMAINING-ROWS
REMAINING-COLUMNS

REMAINING-NE-DIAGONALS
REMAINING-SE-DIAGONALSi

THEN (LOOP-RETURN CHOICE-ACCEPTED)

ELSE IUNDO-ACTIONS: (DENY (PIECE-ON-BOARD QUEEN
BOARD-POSITION))

(MAINTENANCE-ACTIONS: (ADD ROW TO
REMAINING-ROWS)

(ADD COLUMN TO

REMAINING-COLUMNS)
(ADD NE-DIAGONAL TO

REMAINING-NE-DIAGONALS)
(ADD SE-DIAGONAL TO

REMAINING-SE-DIAGONALSi
(LOOP-RETURN FORCE-ANOTHER-CHOICE))

THEN (EXIT SUCCESSFULi
ELSE (UNDO-ACTIONS: (ADO QUEEN TO QUEEN-SET))

(EXIT UNSUCCESSFUL
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